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Question 1. Let Rω be the countably infinite product of R with itself, and let R∞ be the subset of Rω consisting
of sequences which are eventually zero, that is, (ai)

∞
i=1 such that only finitely many ai’s are nonzero. Determine

the closure of R∞ in Rω with respect to the box topology, the uniform topology, and the product topology on Rω.

Answer.

(i) The product topology: A basic open set of Rω is of the form

U = U1 × U2 × · · · × Un × R× R× · · ·

where Ui are open sets in R. Now take any x = (x1, x2, . . . , xn, xn+1, xn+2, . . .) ∈ Rω, and any basic open
set U as above containing x. Let y = (x1, x2, . . . , xn, 0, 0, 0, . . .). Now, it is easy to see that y ∈ U . Also,
y ∈ R∞. Hence R∞ is dense in Rω in the product topology.

(ii) The box topology : Every basic open set is of the form

W = W1 ×W2 × · · · ×Wi ×Wi+1 × · · ·

Now take any x = (x1, x2, . . . , xi, xi+1, xi+2, . . .) ∈ Rω \R∞, then xn 6= 0 for infinitely many n. In particular,
if

Wn =

{
R \ {0} if xn 6= 0

(−1, 1) if xn = 0

then if W =
∏
Wn as above, then x ∈W and

W ∩ R∞ = ∅

Hence R∞ is closed in the box topology.

(iii) The uniform topology: Consider Rω with the uniform topology and let d be the uniform metric. Let C ⊂ Rω
be the set of sequences that converge to 0. Claim, R∞ = C.

Let (xn) ∈ Rω − C be a sequence that does not converge to 0. This means that there is some 1 > ε > 0
such that |xn| > ε for infinitely many n. Then Bd((xn), ε/2) ⊂ Rω −C. Thus, Rω −C is open and hence C
is closed. Therefore, R∞ ⊂ C as R∞ ⊂ C.

On the other hand, let (xn) ∈ C. For any 1 > ε > 0 we have |xn| < ε/2 for all but finitely many n. Thus
Bd((xn), ε) ∩ R∞ 6= ∅. Thus, (xn) ∈ R∞ and hence C ⊂ R∞. This completes the prove.

Question 2. Consider Z as a normal subgroup of the additive group R of real numbers. Prove that the group
R/Z is isomorphic to the group S1 as topological groups.

Answer: Let f : R → S1 defined by f(t) = ei2πt = cos(2πt) + i sin(2πt). Here R is a group with respect to
addition and S1 is a group with respect to complex multiplication. First we prove that f is a surjective group
homomorphism. Clearly, f is surjective since for every z ∈ C on the unit circle, z = ei2πt for some t ∈ R. Now,
we will show that f is a group homomorphism.

f(t+ s) = e2πi(t+s) = e2πit+2πis = e2πit · e2πis = f(t) · f(s).

So f is a group homomorphism. Observe Ker f = {t ∈ R|e2πt = cos(2πt) + i sin(2πt) = 1} = {t ∈ R| cos(2πt) =
1} = Z. It follows from the first isomorphism theorem that

R/Ker f ∼= Im f ⇔ R/Z ∼= Im f = S1.

Since R/Z and S1 are both topological groups, R/Z is isomorphic to S1 as topological group.
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Question 3. Give an example (with details) of a connected topological space which has infinitely many path
connected components. If X is a locally path connected topological space and U is a connected open subset of
X, then prove that U is path connected.

Answer.

(i) The ordered square I2o is a connected topological space but it has infinitely many path connected components.
Being a linear continuum, the ordered square is connected.

Claim: {{x} × I|x ∈ I} be the path components of I2o .

For any two points x× a and x× b in {x} × I there is a path f : [a, b] → {x} × I defined by f(y) = x× y
from x× a to x× b. Therefore, {x} × I is path connected.

Let p = x × 0 and q = y × 1 be two points in {x} × I and {y} × I respectively, where x < y. if possible,
let f : [a, b] → [x, y] × I is a path joining p = x × 0 and q = y × 1. Then, the image set f([a, b]) must
contains every point in [x, y] × I, by the intermediate value theorem. Therefore, for each r ∈ [x, y] the set
Ur = f−1(r × (0, 1)) is a non empty open subset of [a, b]. Choose, for each r ∈ [x, y], a rational number
qr ∈ Ur. Since the sets Ur are disjoint, the map r → qr is an injective map from the closed interval [x, y]
into the set of rational number Q. This contradict the fact that the closed interval [x, y] is uncountable.

(ii) Let x ∈ U and let V ∩U be an open set in U containing x for some open set V in X. Since U is open in X,
V ∩U is open in X. Therefore, there is a path connected neighborhood of x contained in V ∩U . Therefore,
U is a locally path connected space. By Theorem 25.5, in a locally path connected space, the components
and the path components are the same. Since U is connected, U is the only component and hence U is the
only path component of U . Therefore, U is path connected.

Question 4. Let I2o be the oredered square. Is I2o locally path connected? locally connected? compact?

Answer.

(i) The ordered square is locally connected: just observe that any neighborhood U of any point x× y contains
an interval of the form (a×b, c×d) for a×b < x×y < c×d by definition of the order topology. By Theorem
24.1 in the book, an (open) interval of a linear continuum is connected, so (a× b, c× d) is connected. Hence
the ordered square is locally connected.

(ii) The ordered square is not locally path-connected: consider any point of the form x× 0. By definition of the
order topology, any open neighborhood of x× 0 must be of the form U = (a× b, c× d) where a× b < x× 0.
Since the second coordinate of x × 0 is 0 this means that a < x. In particular U contains all points of the
form y × z for a < y < x. Fix one such y0 and choose any z0 ∈ [0, 1]. We claim that there is no path
which connects y0 × z0 with x× 0. Suppose there is such a path; then by the intermediate value theorem,
all points in I × I between y0 × z0 and x× 0 are in the image of the path. However there are uncountably
many elements in the interval (y0, x), so the same argument as in the answer of question 3(i), shows that
this is impossible. Hence the ordered square is not locally path-connected.

(iii) The ordered square I2o is compact: Let U be an open cover of I2o . Choose a point x ∈ I. Then U is also
an open cover of {x} × I. Since {x} × I ∼= I and I is compact, this open cover has a finite subcover Ux.
Let Ux be the union of the elements of the finite subcover. If x ∈ (0, 1), then there exist px, qx such that
0 ≤ px < x < qx ≤ 1 and px × 0, qx × 0 ∈ Ux. If x = 0 then there is such a qx and if x = 1 the there is such
a px. Let

Vx =


[0, qx) if x = 0

(px, qx) if x ∈ (0, 1)

(px, 1] if x = 1

Then {Vx|x ∈ I} is an open cover of I. Since I is compact, it has a finite subcover, say, {Vx1 , Vx2 , . . . , Vxn}.
Then U0 ∪ Ux1 ∪ Ux2 · · · ∪ Uxn ∪ U1 is a finite subcover of U which covers the ordered square.

Question 5. State and prove the Lebesgue number lemma.
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Statement: If the metric space (X, d) is compact and an open cover of X is given, then there exists a number
δ > 0 such that every subset of X having diameter less than δ; is contained in some member of the cover.

Proof: Let U be an open cover of X. Since X is compact we can extract a finite subcover {A1, . . . , An} ⊆ U .

For each i ∈ {1, . . . , n}, let Ci := X \Ai and define a function f : X → R by f(x) := 1
n

∑n
i=1 d(x,Ci).

Since f is continuous on a compact set, it attains a minimum δ. The key observation is that δ > 0. If Y is a
subset of X of diameter less than δ, then there exist x0 ∈ X such that Y ⊆ Bδ(x0), where Bδ(x0) denotes the
ball of radius δ centered at x0 (namely, one can choose as x0 any point in Y ). Since f(x0) ≥ δ there must exist
at least one i such that d(x0, Ci) ≥ δ. But this means that Bδ(x0) ⊆ Ai and so, in particular, Y ⊆ Ai.

(Reference: https://en.wikipedia.org/wiki/Lebesgue%27s_number_lemma)

3


